- Separabilität
- Se|pa|ra|bi|li|tätdie; -<zu ↑...ität>separable Beschaffenheit, Trennbarkeit.
Das große Fremdwörterbuch. 2013.
Das große Fremdwörterbuch. 2013.
Separabilität (Quantenmechanik) — In der Quantenmechanik bezeichnet man den Zustand eines zusammengesetzten Systems als separabel wenn er nicht verschränkt ist, das heißt, wenn er sich als Gemisch aus Produktzuständen schreiben lässt. Inhaltsverzeichnis 1 Separabilität für reine… … Deutsch Wikipedia
Separabilität — Das Wort separabel hat in der Mathematik verschiedene Bedeutungen: für separable Räume siehe Separabel (Topologie); für separable Körpererweiterungen siehe Körpererweiterung. für separable Zustände siehe Separabel (Quantenmechanik) für separable… … Deutsch Wikipedia
Separabel (Quantenmechanik) — In der Quantenmechanik bezeichnet man den Zustand eines zusammengesetzten Systems als separabel wenn er nicht verschränkt ist, das heißt, wenn er sich als Gemisch aus Produktzuständen schreiben lässt. Inhaltsverzeichnis 1 Separabilität für reine… … Deutsch Wikipedia
Niemytzki-Ebene — Der Niemytzki Raum (nach Viktor Vladimirovich Nemytskii) ist ein im mathematischen Teilgebiet der Topologie untersuchtes konkretes Beispiel eines topologischen Raumes. Auf der oberen Halbebene wird eine im Vergleich zur euklidischen Topologie… … Deutsch Wikipedia
Niemytzki-Raum — Der Niemytzki Raum (nach Viktor Vladimirovich Nemytskii) ist ein im mathematischen Teilgebiet der Topologie untersuchtes konkretes Beispiel eines topologischen Raumes. Auf der oberen Halbebene wird eine im Vergleich zur euklidischen Topologie… … Deutsch Wikipedia
Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Galoissch — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Körpererweiterung — In der abstrakten Algebra ist ein Unterkörper K eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia