- Kategorientheorie
- Ka|te|go|ri|en|the|o|riedie; -: Teilgebiet der Mathematik zur einheitlichen Beschreibung u. Behandlung von ↑Phänomenen in verschiedenen mathematischen Gebieten.
Das große Fremdwörterbuch. 2013.
Das große Fremdwörterbuch. 2013.
Kategorientheorie — Kategorientheorie, von S. Eilenberg und S. MacLane in den Jahren 1942 45 begründetes Teilgebiet der Mathematik; entstand, um Phänomene, die in verschiedenen mathematischen Gebieten auftraten, einheitlich beschreiben und behandeln zu können. … … Universal-Lexikon
Kategorientheorie — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelt wurde; Saunders MacLane nennt seine 1945 in Zusammenarbeit mit Samuel Eilenberg entstandene… … Deutsch Wikipedia
Einbettung (Kategorientheorie) — Treue Funktoren und die hier ebenfalls zu besprechenden vollen und volltreuen Funktoren, die eng damit zusammenhängen, sind in der mathematischen Theorie der Kategorientheorie betrachtete Funktoren mit speziellen Eigenschaften. Inhaltsverzeichnis … Deutsch Wikipedia
Pfeil (Kategorientheorie) — In der Kategorientheorie (einem Teilgebiet der Mathematik) betrachtet man so genannte Kategorien, die aus einer Vielzahl von Objekten und Morphismen bestehen. Eine Kategorie ist gegeben durch zwei Daten: Eine Klasse von Objekten und für je zwei… … Deutsch Wikipedia
Produkt (Kategorientheorie) — Produkt in der Kategorientheorie In der Kategorientheorie ist das Produkt einer durch die Menge I indizierten Familie von Objekten ein Paar , wobei P ein Objekt ist, pri ein Morphismus (genannt Projektion) von P nach Ai ist (für jedes i aus I) … Deutsch Wikipedia
Limes (Kategorientheorie) — In der Algebra oder allgemeiner der Kategorientheorie ist der projektive Limes (oder inverse Limes oder einfach Limes) eine Konstruktion, mit der man verschiedene in gewisser Weise zusammengehörende Strukturen verbinden kann. Das Ergebnis dieses… … Deutsch Wikipedia
Bild (Kategorientheorie) — In der Kategorientheorie ist ein Bild eines Morphismus ein Unterobjekt von Y, das die folgende universelle Eigenschaft hat: Es gibt einen Morphismus mit f = hg. Für jedes Unterobjekt , das obige Eigenschaft erfüllt (f = lk) … Deutsch Wikipedia
Darstellbarkeit (Kategorientheorie) — Darstellbarkeit ist ein Begriff aus dem mathematischen Teilgebiet der Kategorientheorie. Es beschreibt den Umstand, dass es für gewisse Konstruktionen klassifizierende Objekte gibt. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 3 Beispiele … Deutsch Wikipedia
Gruppoid (Kategorientheorie) — In der mathematischen Kategorientheorie ist ein Gruppoid eine Kategorie, in der jeder Pfeil ein Isomorphismus ist. Anwendung und Beispiele In der algebraischen Topologie wird das Fundamentalgruppoid zu einem topologischen Raum X assoziiert. Die… … Deutsch Wikipedia
Monade (Kategorientheorie) — Eine Monade ist im mathematischen Teilgebiet der Kategorientheorie eine Struktur, die gewisse formale Ähnlichkeit mit den Monoiden der Algebra aufweist. Inhaltsverzeichnis 1 Definition 2 Beispiele 2.1 Adjungierte Funktoren … Deutsch Wikipedia